Skip to main content

Poisson Distribution

A Poisson experiment is a statistical experiment that has the following properties:

  • The experiment results in outcomes that can be classified as successes or failures.
  • The average number of successes (μ) that occurs in a specified region is known.
  • The probability that a success will occur is proportional to the size of the region.
  • The probability that a success will occur in an extremely small region is virtually zero.

Note that the specified region could take many forms. For instance, it could be a length, an area, a volume, a period of time, etc.

Notation

The following notation is helpful, when we talk about the Poisson distribution.

  • e: A constant equal to approximately 2.71828. (Actually, e is the base of the natural logarithm system.)
  • μ: The mean number of successes that occur in a specified region.
  • x: The actual number of successes that occur in a specified region.
  • P(x; μ): The Poisson probability that exactly x successes occur in a Poisson experiment, when the mean number of successes is μ.

Poisson Distribution

A Poisson random variable is the number of successes that result from a Poisson experiment. The probability distribution of a Poisson random variable is called a Poisson distribution.

Given the mean number of successes (μ) that occur in a specified region, we can compute the Poisson probability based on the following formula:

Poisson Formula. Suppose we conduct a Poisson experiment, in which the average number of successes within a given region is μ. Then, the Poisson probability is:

P(x; μ) = (e) (μx) / x!

where x is the actual number of successes that result from the experiment, and e is approximately equal to 2.71828.

The Poisson distribution has the following properties:

  • The mean of the distribution is equal to μ .
  • The variance is also equal to μ .

Example 1

The average number of homes sold by the Acme Realty company is 2 homes per day. What is the probability that exactly 3 homes will be sold tomorrow?

Solution: This is a Poisson experiment in which we know the following:

  • μ = 2; since 2 homes are sold per day, on average.
  • x = 3; since we want to find the likelihood that 3 homes will be sold tomorrow.
  • e = 2.71828; since e is a constant equal to approximately 2.71828.

We plug these values into the Poisson formula as follows:

P(x; μ) = (e) (μx) / x!
P(3; 2) = (2.71828-2) (23) / 3!
P(3; 2) = (0.13534) (8) / 6
P(3; 2) = 0.180

Thus, the probability of selling 3 homes tomorrow is 0.180 .

Cumulative Poisson Probability

A cumulative Poisson probability refers to the probability that the Poisson random variable is greater than some specified lower limit and less than some specified upper limit.

Example 1

Suppose the average number of lions seen on a 1-day safari is 5. What is the probability that tourists will see fewer than four lions on the next 1-day safari?

Solution: This is a Poisson experiment in which we know the following:

  • μ = 5; since 5 lions are seen per safari, on average.
  • x = 0, 1, 2, or 3; since we want to find the likelihood that tourists will see fewer than 4 lions; that is, we want the probability that they will see 0, 1, 2, or 3 lions.
  • e = 2.71828; since e is a constant equal to approximately 2.71828.

To solve this problem, we need to find the probability that tourists will see 0, 1, 2, or 3 lions. Thus, we need to calculate the sum of four probabilities: P(0; 5) + P(1; 5) + P(2; 5) + P(3; 5). To compute this sum, we use the Poisson formula:

P(x < 3, 5) = P(0; 5) + P(1; 5) + P(2; 5) + P(3; 5)
P(x < 3, 5) = [ (e-5)(50) / 0! ] + [ (e-5)(51) / 1! ] + [ (e-5)(52) / 2! ] + [ (e-5)(53) / 3! ]
P(x < 3, 5) = [ (0.006738)(1) / 1 ] + [ (0.006738)(5) / 1 ] + [ (0.006738)(25) / 2 ] + [ (0.006738)(125) / 6 ]
P(x < 3, 5) = [ 0.0067 ] + [ 0.03369 ] + [ 0.084224 ] + [ 0.140375 ]
P(x < 3, 5) = 0.2650

Thus, the probability of seeing at no more than 3 lions is 0.2650.

Comments

Popular Posts

Graphical Distribution of Frequency Distribution

Frequency distribution can be presented graphically in any one of the following ways: Histogram Frequency Polygon Smooth Frequency Curve Cumulative Frequency Curve of Ogive Curve Pie-Chart Histogram: - A histogram is an area diagram in which the frequencies corresponding to each class interval of frequency distribution are by the area of a rectangle without leaving no gap between the cosective rectangles. Frequency Polygon: - This is one kind of histogram which is represented by joining the straight lines of the mid points of the upper horizontal side of each rectangle with adjacent rectangles. Smooth Frequency Curve: - This is one kind of histogram which is represented by joining the mid points by free hand of the upper horizontal side of each rectangle with adjacent rectangles. Comulative Frequency Curve or Ogive Curve: - The total frequency of all values less then the upper class boundary of a...

Empirical Relation between Mean, Median and Mode

A distribution in which the values of mean, median and mode coincide (i.e. mean = median = mode) is known as a symmetrical distribution. Conversely, when values of mean, median and mode are not equal the distribution is known as asymmetrical or skewed distribution. In moderately skewed or asymmetrical distribution a very important relationship exists among these three measures of central tendency. In such distributions the distance between the mean and median is about one-third of the distance between the mean and mode, as will be clear from the diagrams 1 and 2 Karl Pearson expressed this relationship as:

Correlation and Linearity

Correlation coefficients measure the strength of association between two variables. The most common correlation coefficient, called the Pearson product-moment correlation coefficient , measures the strength of the linear association between variables. In this tutorial, when we speak simply of a correlation coefficient, we are referring to the Pearson product-moment correlation. Generally, the correlation coefficient of a sample is denoted by r , and the correlation coefficient of a population is denoted by ρ or R . How to Interpret a Correlation Coefficient The sign and the absolute value of a correlation coefficient describe the direction and the magnitude of the relationship between two variables. The value of a correlation coefficient ranges between -1 and 1. The greater the absolute value of a correlation coefficient, the stronger the linear relationship. The str...